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1 Weyl’s Lemma and Perron’s Method
1.1 Weyl’s lemma
Last time, we were talking about Green’s functions for €2 C C:
1
Gla,y) = g-logle —yl +haly),  Gla,y) =0,y € 99,

where h, is harmonic. If

1

then F is a fundamental solution of A: for all ¢ € C§°(R?):
[ Bae =0,

Theorem 1.1 (Weyl’s lemma). Let Q C C be open, and let u € Li (Q) be such that

loc
/uAgpdsz Ve C ().
Then there exists a harmonic u; € C*(Q) such that uw = uy a.e. in Q.
Proof. Let w C € be open with compact w C €2, and let ¢» € C§° with ¢ = 1 near w. Let
w(e,y) = A((1— W) E@—y), zewyen.
Then w € C*°, and y — w(x,y) has compact support: for all z € w,

w(z,y) = (1 —¢(y)) (AE)(z —y) +
=0 has supp C supp(Vy) C Q



Let v(z) = [u(y)w(z,y)dy € C®(w). We claim that for all g € C§°(w), the integral
Jv(z)g(z)dx = [u(z)g(z)dz; this implies that u = v a.e. We have:

[ v@g@)de = [ [ uw)a, (- 6@)EE - o) dody
:/u(y) /Ea;— x)dx| dy

h(y)

:/U@Awu—wwmwnw

Here, h(y) = [ E(z)g(z + y) dz € C*(R?), where E € L. ., vh € C5°(9).

loc»

= /u(y)Ah(y) dy/u(y)A(i/zh) dy

=0

E is a fundamental solution to the Lapalacian, so Ah(y) = [ E(z)Ag(z + y) dz = g(y).

= /u(y)y(y) dy. O

Remark 1.1. The argument in the proof only uses that £ € L] and E € C*(R?\ {0}).
If we replaced the Laplacian by any other operator with a fundamental solution, the same
proof would work.

1.2 Perron’s method for constructing harmonic functions

Recall Perron’s method for Q2 C C:

Lemma 1.1. Let Q C C be open and connected, and let u : Q — [—00,00) be subharmonic
with u # —oo. Let D = {|x — a| < R} be such that D C Q, and define

u(x) xeQ\D
upl®) =9 4 P D
527 Jjy=r PrR(T — @, y)u(a +y)ds(y) z € D.
Then up is subharmonic in €2, and u < up.
The function up is called the Poisson modification of u.

Definition 1.1. Let  C C be open and connected. A continuous Perron family in 2
is a family F of continuous subharmonic functions u :  — [—00, 00) such that



1. u,v € F = max(u,v) € F.
2. If u € F and D is a disc with D C Q, then up € F.
3. For each = € Q, there is a v € F such that u(xz) > —oo.

Theorem 1.2 (Perron’s method). Let F be a continuous Perron family on an open and
connected ) C C, and let u = sup,crv pointwise. Then one of the following statements
holds:

1. u(z) = 400 for all x € Q.
2. w 18 harmonic in Q.

Remark 1.2. The proof is of local nature; it uses only local properties if v € F, and the
maximum principle is only used on small discs in €.

Let X be a Riemann surface. We claim that Perron’s method works on X.

Definition 1.2. A function u : X — [—00,00) is subharmonic (resp. harmonic) if for
every complex chart ¢, : U, — V,, in some atlas, uog_! is subharmonic (resp. harmonic)
in V,.

Definition 1.3. A parametric disc D = Dx C X is a set such that there exists a
complex chart ¢ : U — V such that Dx C U and ¢(Dx) is a Euclidean disc.

Given u € SH(X), define its Poisson modification:
u(z) zeX\D
upy (z) =
Dx (@) {h(m) z €D,

where h is a harmonic extension of u|gp.
The fundamental theorem of Perron’s method is valid on X, so we can construct inte-
grable harmonic functions on X.
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