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1 Weyl’s Lemma and Perron’s Method

1.1 Weyl’s lemma

Last time, we were talking about Green’s functions for Ω ⊆ C:

G(x, y) =
1

2π
log |x− y|+ hx(y), G(x, y) = 0, y ∈ ∂Ω,

where hx is harmonic. If

E(x) =
1

2π
log |x|,

then E is a fundamental solution of ∆: for all ϕ ∈ C∞0 (R2):∫
E∆ϕ = ϕ(0).

Theorem 1.1 (Weyl’s lemma). Let Ω ⊆ C be open, and let u ∈ L1
loc(Ω) be such that∫

u∆ϕdx = 0 ∀ ∈ C∞0 (Ω).

Then there exists a harmonic u1 ∈ C∞(Ω) such that u = u1 a.e. in Ω.

Proof. Let ω ⊆ Ω be open with compact ω ⊆ Ω, and let ψ ∈ C∞0 with ψ = 1 near ω. Let

w(x, y) = ∆y((1− ψ(y))E(x− y)), x ∈ ω, y ∈ Ω.

Then w ∈ C∞, and y 7→ w(x, y) has compact support: for all x ∈ ω,

w(x, y) = (1− ψ(y)) (∆E)(x− y)︸ ︷︷ ︸
=0

+ · · ·︸︷︷︸
has supp ⊆ supp(∇ψ) ⊆ Ω

.
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Let v(x) =
∫
u(y)w(x, y) dy ∈ C∞(ω). We claim that for all g ∈ C∞0 (ω), the integral∫

v(x)g(x) dx =
∫
u(x)g(x) dx; this implies that u = v a.e. We have:∫

v(x)g(x) dx =

∫∫
u(y)∆y((1− ψ(y))E(x− y))g(x) dx dy

=

∫
u(y)∆y

(1− ψ(y))

∫
E(x− y)g(x) dx︸ ︷︷ ︸

h(y)

 dy

=

∫
u(y)∆y((1− ψ(y))h(y)) dy

Here, h(y) =
∫
E(x)g(x+ y) dx ∈ C∞(R2), where E ∈ L1

loc, ψh ∈ C∞0 (Ω).

=

∫
u(y)∆h(y) dy −

∫
u(y)∆(ψh) dy︸ ︷︷ ︸

=0

E is a fundamental solution to the Lapalacian, so ∆h(y) =
∫
E(x)∆g(x+ y) dx = g(y).

=

∫
u(y)y(y) dy.

Remark 1.1. The argument in the proof only uses that E ∈ L1
loc and E ∈ C∞(R2 \ {0}).

If we replaced the Laplacian by any other operator with a fundamental solution, the same
proof would work.

1.2 Perron’s method for constructing harmonic functions

Recall Perron’s method for Ω ⊆ C:

Lemma 1.1. Let Ω ⊆ C be open and connected, and let u : Ω→ [−∞,∞) be subharmonic
with u 6≡ −∞. Let D = {|x− a| < R} be such that D ⊆ Ω, and define

uD(x) =

{
u(x) x ∈ Ω \D

1
2πR

∫
|y|=R PR(x− a, y)u(a+ y) ds(y) x ∈ D.

Then uD is subharmonic in Ω, and u ≤ uD.

The function uD is called the Poisson modification of u.

Definition 1.1. Let Ω ⊆ C be open and connected. A continuous Perron family in Ω
is a family F of continuous subharmonic functions u : Ω→ [−∞,∞) such that
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1. u, v ∈ F =⇒ max(u, v) ∈ F .

2. If u ∈ F and D is a disc with D ⊆ Ω, then uD ∈ F .

3. For each x ∈ Ω, there is a u ∈ F such that u(x) > −∞.

Theorem 1.2 (Perron’s method). Let F be a continuous Perron family on an open and
connected Ω ⊆ C, and let u = supv∈F v pointwise. Then one of the following statements
holds:

1. u(x) ≡ +∞ for all x ∈ Ω.

2. u is harmonic in Ω.

Remark 1.2. The proof is of local nature; it uses only local properties if v ∈ F , and the
maximum principle is only used on small discs in Ω.

Let X be a Riemann surface. We claim that Perron’s method works on X.

Definition 1.2. A function u : X → [−∞,∞) is subharmonic (resp. harmonic) if for
every complex chart ϕα : Uα → Vα in some atlas, u◦ϕ−1

α is subharmonic (resp. harmonic)
in Vα.

Definition 1.3. A parametric disc D = DX ⊆ X is a set such that there exists a
complex chart ϕ : U → V such that DX ⊆ U and ϕ(DX) is a Euclidean disc.

Given u ∈ SH(X), define its Poisson modification:

uDX
(x) =

{
u(x) x ∈ X \D
h(x) x ∈ D,

where h is a harmonic extension of u|∂D.
The fundamental theorem of Perron’s method is valid on X, so we can construct inte-

grable harmonic functions on X.
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